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Abstract-A numerical procedure has been developed to investigate the interaction of thermal radiation with 
conduction and convection in thermally developing gas-particulate suspension flow through a circular tube. 
In the present study an analysis is performed on the turbulent flow of a multiphase medium with absorbing, 
emitting and anisotropically scattering particulates bounded by a heated or cooled constant-temperature wall. 
The contribution of thermal radiation is obtained by modification of the differential approximation fo 
accommodate linear-anisotropic scattering, which is shown to be accurate by comparison with some exact 
solutions. The governing differential equations are derived as three coupled (non-linear)equations which are 
solved numerically by an implicit finite difference method with iterative procedure of the particulate terms. . . 

The iesults are summarized for wide ranges of parameters. . 

NOMENCLATURE 

surface area of single particle = KC/~ ; 
degree of anisotropy, - 1 2 aI 5 + 1 
specific heat at constant pressure; 

dimensionless particle to gas film 
coefficient ; 
specific mass loading ratio; 
pipe diameter; 
particle diameter; 

fanning friction factor; 
dimensionless fluid velocity function, 

L)fu//%Jur ; 
dimensionless fluid diffusivity function, 

(I +c~ Pr/v); 

dimensionless radial variables; 
dimensionless axial variable ; 
heat-transfer coefficient for pipe flow; 
heat-transfer coefficient for flow over 
solid particle ; 
thermal conductivity of fluid ; 
dimensionless turbulent Reynolds 
number; 
dimensionless conduction-radiation 

parameter, k,/4aTfR ; 

local Nusselt number; 

number of solid particles per unit volume; 
Prandtl number, p,C,/k,; 

dimensionless particle velocity function, 

n,V,p,u,/2n V P u ; P PPP 
heat flux; 

dimensionless heat flux, 

qRlk,T;; 

R, 
Rep 
r, 
T, 
U, 

U, 
V 

P’ 

.x, 

y+, --, 
I:, 

rl, 
KR, 
0, 
AOp, 

pipe radius ; 
gas Reynolds number U,D/v; 
radial distance; 

temperature ; 
axial velocity ; 
average or bulk velocity; 
solid particle volume; 
axial coordinate ; 
dimensionless radial coordinates; 

eddy diffusivity, wall emissivity ; 
dimensionless radial coordinate, r/R ; 
optical thickness based on absorption ; 
dimensionless temperature; 

dimensionless temperature difference, 

0,-a,; 
dynamic viscosity ; 
kinematic viscosity ; 
density ; 
Stefan-Boltzmann constant; 
total optical thickness, KR/( 1 - w); 

dimensionless axial coordinate; 
single scattering albedo, 0 2 o 5 1. 

Subscripts 

s, 
H, 
1, 
M, 
m 
mm. 

P. 
W, 

fluid ; 
heat; 
inlet ; 
momentum ; 
single-phase mean ; 
suspension mixed mean ; 
particle ; 
wall. 
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Superscripts 

c’.’ 
dimensionless turbulent quality ; 
convective ; 

R, radiative; 

7. Total. 

INTRODUCTION 

THERE is a large variety of industrial applications in 
which the heat transfer rates in flowing mixtures of 
gases and solid or liquid particles are of importance. 
These applications range from waste heat extraction 
from flue gases, nuclear reactor cooling (steam- 
droplet mixtures), and solid-propellant rockets 
(product gases and metallic particles used to 

increase the thermal conductivity of the propellant 
resulting in hgher thrusts), to MHD generators (pro- 
duct gases seeded to improve electrical conductivity). 
Probably the most important applications of gas- 
particulate mixtures today are in the area of com- 
bustion of fuel for power production (oil burning, 
pulverised-coal combustion and, in the near future, 

combustion of coal in fluidized beds). 
The increase of heat transfer rates is a prominent 

characteristic in multiphase suspensions. The particles 
influence heat transfer rates by disturbing the laminar 
or turbulent flow structure. This occurs in several 
ways : (i) penetration of solids through the buffer layer 

and into the laminar sublayer causes a thinning of the 
viscous sublayer and a reduction in the resistance to 
convective heat transfer; (ii) the presence of solids 

may cause a damping of the convective eddies and 
adversely affect the turbulent transport of energy ; and 

(iii) energy exchange between the laminar sublayer and 
turbulent core is promoted by the radial motion of the 
particulates. Furthermore, the high volumetric heat 
capacity of the solid compared with that of the fluid 
prolongs the thermal entry length and increases the 
two-phase heat transfer. In addition to the above 
phenomena, in high-temperature applications the in- 
teraction of radiant energy with the participating 

medium is of importance. This interaction can pro- 
foundly increase the overall heat transfer rate due to 
the large absorptivity of the cloud of fine particles. 

Experiments by Farbar and Morley [l] first dem- 
onstrated that it was possible to increase heat 
transfer rates by adding solid particles to gas flow. The 
first analytical treatment made on heat transfer in a 
turbulent suspension has been published by Tien [2], 
who predicted higher heat transfer rates for the 
thermal entry length. Comparison of experiments by 
Farbar and Depew [3, 41 with theory [2] demon- 
strated that even in the absence of high-temperature 
effects the convection in gas-particulate suspensions is 
not well understood. However, experiment [3,4] also 

shows that, at moderate temperatures, the heat trans- 
fer is only moderately increased unless the particle 
mass loading ratio becomes very large. Echigo et al. [S, 
61 and Tamehiro et al. [7] have performed numerical 
analyses on the heat transfer with fully developed 

laminar and turbulent flow of gaseous suspensions 
with radiatively absorbing and emitting particulates 
between parallel plates and in circular tubes. The only 
work considering combined convection radiation 
with scattering appears to be the one by Chawla and 
Chan [8]. However, their study is limited to laminar 
flow between parallel plates with isotropic scattering. 
To date, no analysis has been performed to include the 
important effects of anisotropic radiative scattering in 
gassparticulate suspensions, 

It is the purpose of this paper to investigate the 
combined convective and radiative effects in turbulent 

tube flow of an absorbing, emitting and 
linear anisotropically scattering gas-particulate sus- 

pension The governing differential equations are 
derived as threecoupled (non-1inear)equations. which 
are solved numerically by an implicit finite difference 
method with iterative procedure of the particulate 
terms. The contribution of thermal radiation is ob- 

tained by modification of the differential approxi- 
mation to accommodate linear-anisotropic scattering. 
Results are reported as a parametric study of the 
interaction of predominant convective and radiative 
parameters and their effects on the Nusselt number, 
mixed-mean temperature and radiative flux. 

ANALYSIS 

Assumptions 

In the present investigation the following major 
simplifying assumptions are made : 

1. 

2. 

3. 

4. 

5. 

The pipe &all is isothermal (T, = const) and 

gray. 
The flow field of the two phases is hy- 
drodynamically fully developed and has a 
laminar or turbulent velocity distribution. 

The temperatures of the particles and the gas 
are equal and constant at the inlet. 

The fluid and particle properties are tempera- 
ture independent. 

The particles are spheres of uniform size and 
their thermal conductivity is large enough to 

neglect radial variation of temperature within 
the sphere (small Biot number). 
The particles are uniformly distributed 
throughout the pipe cross-section and are suf- 
ficiently small and numerous to be considered 
as a continuum. 

6. 

7. 

8. 

9. 
10. 

The time-mean velocities of the two phases 
are equal and the presence of the particles has 
no effect on the velocity profile, eddy diffusi- 
vities for heat or momentum, or the friction 
factor of the gas. 
The eddy diffusivity of the particles is 
negligible. 
The energy transport by collisions among 
particles or with the wall are negligible. 
Viscous dissipation is not included. 
The solids are gray absorbing, emitting and 
linear-anisotropically scattering particu- 
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lates; the gas is transparent to radiation. 
11. The radiative transfer in the axial direction is 

neglected as compared with the radial heat 
transfer; this has been shown to be a good 
approximation except for regions close to a 
temperature jump [9]. 

Some of the above assumptions are not necessarily 
very good. For example, assumptions (5), (6), and (7) 
are made primarily because at present no theory or 
experimental correlations exist to predict the influence 
of these effects. However, if strong radiation is present 
the introduced inaccuracies become less and less 
important. A number of the above assumptions are 
invoked only in the presentation of parametric results, 
i.e. the theory developed below is not limited by 
assumptions (l), (3), (5), (6), and (7). Of course, if 
assumption (3) is to be relaxed, no hydrodynamically 
fully developed velocity profile exists, and simul- 
taneous solution of the momentum equation becomes 
necessary. However, in the light of the uncertainties 
present in the evaluation of gas-particulate interac- 
tion, it may be sufficient to assume negligible radial 
velocities, reducing the continuity equation to pu = 
pu(r) only. In the following analysis, assumption (3) is 
relaxed in this fashion, while for the presentation of 
results only temperature-independent properties will 
be employed. 

Basic equations 
Based on the foregoing postulations an energy 

balance in the cylindrical coodinate system (see Fig. 1) 
yields the basic equations governing the temperature 
field. For the gas phase 

pfCfufz = n,h,A,(T, - Tr) 

Id 
+ ;m 

?T, 
r(k, + P~C~Q,.,)~ 1 1 (1) 

and for the particulates, 

n,V,p,C,u, 2 = n,h,A, (T, - TJ 

ia 
+ ; m 

,[ 
rn,V,P,C,G, p 

dT, 
Sr 1 - i $ (rqR), (2) 

subject to the boundary conditions 

r = 0: 2 = 0; x=0: T,=T,= T. rn, 
(3) 

r=R: T,=T,. 

These equations are essentially the same as the ones of 
Tien [2], with the exception that the present for- 
mulation allows the incorporation of a more sophisti- 
cated radiation model, similar to that of Tamehiro et 
al. [7]. Note that there may be a temperature discon- 
tinuity between the wall and the particles at the wall, 
due to the absence of a conduction term in equation 
(2). In the absence of thermal radiation there would be 
no temperature slip, due to assumption (6). If radiation 
is important, the temperature slip can be evaluated 
from equation (2) as 

n,h,A,(T,-T,)I,=, = t~(‘qR)l,=R- (4) 

The exact equations for the radiative heat flux in l-D, 
gray, linear-anisotropically scattering media have 
been derived by Azad and Modest [lo]. There are two 
reasons for limiting the discussion to linear- 
anisotropic scattering: (1) Exact analytical solu- 
tions are practically impossible to obtain for higher- 
order scattering phase functions. This is due to the fact 
that the azimuthal direction cannot be eliminated by 
integration as in the planar case, resulting in higher- 
order integral equations in the radial and local di- 
rection coordinates. (2) The accuracy of a 
linear-anisotropic approximation to realistic scatter- 
ing phase functions in heat transfer applications 
without collimated irradiation was established in a 
previous paper [ 121. There any forward-scattering 
peak was removed from the phase function and treated 
as transmitted. Backward-scattering peaks were re- 
moved in a similar fashion, while the remnant of the 
scattering phase function was approximated by 

I x0-f 
x=0 

FIG. 1. Coordinate systems. 
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linear-anisotropic scattering. Using the resulting 
modified scattering coefficient and modified phase 
function gave excellent prediction of radiative transfer 
rates as long as the phase function was relatively 
smooth and had insignificant back-scattering. 

Incorporation of the exact integral formulation for 
linear-anisotropic scattering would lead to excessive 
computer time demands in the present flow problems. 
However, they also showed that their modified differ- 
ential approximation [ 11, 121 yields results to within a 
few percent accuracy for any realistic temperature 
profile. Thus this model is used here as well as the 
results in [lo], viz. 

= 4ah-s (5) 
c’r ’ 

subject to the boundary conditions 

r=O: qR=O; 
(6) 

where t: is the emissivity of the wall. 
In equation (5) a, represents the degree of aniso- 

tropy, where -l~a,~+l. For a,>0 forward 
scattering dominates, while a, < 0 results in mostly 
backward scattering. In the present case of a two- 
phase flow with radiatively participating particulates 
through a circular tube, equations (l), (2), and (5) are 
the governing equations of the system with T,, T, and 
qR to be determined. 

The 3-layer turbulent velocity distribution for fully 
developed flow, presented in Kays [ 131 for the laminar 
sublayers, and as proposed by Reichardt [ 141 for the 
turbulent core, are used and given by: 

laminar sublayer: 

u+ = y+, 0 < y+ < 5; 

buffer layer : 

u+ = -3.05+5.0Iny+, 5jy+ ~30; (7) 

Turbulent core : 

1.5(1 +r/R) 

1 + 2(r/R)’ I ’ 
y+>30. 

The momentum eddy viscosity for the gas, Ed, is 
described by the 2-layer model. The wall region ( y + < 
40), as described by the Van Driest model modified by 
Spalding [15], results in 

CM k (kU+) 
-=_ eku’_l-kU+ @U+13 ,y+ <40 _~ _ ~ 

v E 2! 3! 1 (84 
where k = 0.407 and E = 10. 

In the turbulent core the Reichardt model [14] 

M- 
Y 

- kR,‘[l -(r/R)‘][I +2(r/R)‘], y+ 240(8b) 

is employed. In the above equations the standard non- 
dimensional quantities 

U+ 
U 

=iqjp+ 
= i Re J(,f/S), R+ = Re ,,/(flS) 

(9) 

have been introduced. 
The eddy diffusivity for heat, I+,, is calculated 

using the standard assumption that the turbulent 
Prandtl number is approximately equal to unity, i.e. 
Pr, = EM/&” 1 1. 

The definition of a mixed-mean temperature and, 
therefore, of a Nusselt number presents some problem 
if the specific heats of gas and particulates are 
temperature-dependent. Fortunately, strong tempera- 
ture dependence of specific heats is rare, and it is 
assumed here that it may be approximated by 

(10) 

Now defining an overall mixture mixed-mean tem- 
perature in terms of enthalpies as 

i,h,, + n$,h,, = ti’/h,,,,, + ti~h,,,,,, (11) 

where 

pfufhfr dr, (12) 

n,V,p,u,h,r dr, (13) 

leads to 

T,,zp2 
PR 

! p,u/C,mR2 0 
pfufCJT,r dr, (14) 

T,, = -2 ~ 
1 

R 

n,V,p,U,C,mR2 0 

n,VpPpU,C,T,r dr 

(15) 

T mm = 
(I+ n,)ti&‘,,T,, + (If n,)$,C,,T,, 

(I+ n,)h/, C,,, + (I+ nfM,C,,, 
(16) 

The mixture mixed-mean temperature can also be 
evaluated through axial integration from 

T = T, - 27tR 
qTdx 

mm ti,C,,,+rir,C,,’ (17) 

where 4’ is the total heat flux (convective and radi- 
ative) at the tube wall, i.e. 

qT = q(‘ + qR, (18) 

where the convective flux is evaluated from 

4c = -k,% 
& r=R’ 

(19) 

and the radiative flux, qR, is found from equation (6). 



The Nusselt number for the gas-particulate suspen- 
sion is defined as 

Xf radial integration for T_ is used, equation (I@, Nu, 
is evaluated from 

Nu, = _-_ (21) 

For axial integration, equation (17), on the other hand, 
Nu, is determined from 

The governing equations may be non- 
dimensionai~zed by introducing the following 
quantities : 

A0, = 0, - 8,, 

The vahtes for MI, = 0, - 0, are usually very small as 
compared to 8, (combined with C, s 1). In fact, for 
small particles without chemical reactions (such as 
combustion), Or and 0, are often so close that usage of 

cm a single energy equation would be adequate. There- 

fore, in actuaf numerical calculations the particle 
energy equation (30) is replaced by one based on AO, 
This is achieved by multiplying equation (29) by 
~~p~C,/f,,f~ and subtracting it from equation (30). 

For the calculations of the radiative flux equally- 
spaced nodes result in better numericat stability, 
Therefore, equation (26) is not transformed with 
respect to z. Rather. values of qR and 0, are passed back 
and forth between equations (26) and (30) by the use of 
splines. This leads to 

(radial integration), (33) 

Ok‘ 

(27) 

For stability of numerical calcutations, equations 
f24) and (25) are further transformed by using 

z = In [kR,(I --?)+I]; $ = fn [CC-E 11% 

f4 = (kR,e-z)2; js=(kR,+l)/(kR,+ 1 -e’), L28) 

kR, = 0.4 J(fi8) Reti 91 = Ce-” Rei f’ri, 

where z is a stretched radial coordinate which places a 
lot of nodes near the wall, and $I is a stretched axial 
coordinate, which places a iot of nodes near the iniet, 
depending on the choice for the constant C. Thus : 

Using the non-dimensionahzation and transfor- 
mations, the expressions for mixed-mean temperatures 

and 

(axial integration). (34) 
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Finally. the Nusselt number is evaluated from 

(radial integration), (35) 

(axial integration). (36) 

Comparison between results from radial and axial 
integration schemes was used to check numerical 
stability and served as a criterion to establish the 
optimum number of radial nodes and axial stepping. 

RESULTS AND DISCUSSION 

For completeness, the general trends of the 
gas-particuIate temperature profiles will be discussed 
briefly beforeexamining the heat transfer results. Ifone 
neglects radiation (low temperature cases) for a flow of 
a cold mixture through a hot tube (T,/T, > l), heat 
transfer takes place as follows: The carrier gas gains 
heat by convection from the tube walls, while the 
particles gain heat from the gas due to the forming 
temperature difference. Thus the heat-up of the par- 
ticles lags behind that of the gas. However, if sub- 
stantial particle radiation is present (higher tempera- 
ture cases), this is not necessarily the case, due to direct 
energy exchange between hot wall and cold particles. 
Rest&s show that the temperature of the particles is 
higher than that of the gas in the central core while in 
the proximity of the wall it is lower than that of the gas 
with the intersection of both temperature profiles 
moving toward the wall with decreasing M,, and 
increasing x,/R. Similarly, the opposite is true if T,,,/Ti 

< 1. 

Heat tran$r results 

To establish the accuracy of the numerical code the 
predicted convective Nusselt numbers based on the 
mixed-mean temperature were compared with analyti- 
cal results for laminar and turbulent pipe flow for a 
transparent gas (no particles) for Pr = I. For laminar 
flow the computed Nu was found to be within 0.3% of 
the theoretical Nusselt number for ail values of 
(.u/R)/Re.Pr > lV5. For turbulent flow the radially 
computed asymptotic Nusselt number, NU 1:, is within 
So/, (high side for all Rr,) of the modified 
Dittus-Boelter formula Nrr , = 0.021 Reg’ PrD.33 for 
5000 < Rr, < 100,000 (T, = constant). Numerical 
computing of Nusselt numbers within a few percent of 
experimental results is a common problem for turbu- 
lent flow because of the diffusivity schemes employed. 
Thus various refinements in eddy diffusivity models 
are normally included, such as those presented in Kays 
[ 131, by modification of the diffusivity ratio ofheat and 
momentum to bring the final results into close cor- 
respondence with experimental data. However, an 
error within +So/, of the empirical formula for all 

turbulent Reynolds numbers investigated is certainly 
within the required accuracy of most engineering 
applications. Further verification of the code’s ac- 
curacy was established by running gas particulate 
flows with varying mass-loading ratios. The code 
accuracy and numerical results remained Ltnchanged 
from the gas-only case except for a shifting in the .Y- 
coordinate by a factor equal to the equivalent specific 
mass loading ratio (I + C,). as predicted by Tien [2]. 

The accuracy of the differential approximation as a 
reliable radiation model was established by Azad and 
Modest [ 11, 12j. In order to ascertain that errors from 
the differential approximation would not accumulate 
when applied to a long pipe. some test-runs were made 
also using the exact integral formulation from [lo] for 
the radiative flux in equation (;O). Figure 2 shows a 
comparison between the mixed-mean temperatures for 
various combinations of total optical thickness. r0 = 
KR/( 1 -to), and the condliction-radiation parameter. 
M,. The two resultsare in excellent agreement and the 
dominant trend shown is that the mixed-mean tcm- 
peratures predicted by the exact solution lag behind 
those obtained from the differential approximation. 
The reason for this behavior is characteristic of the 
differential approximation which always overpredicts 
the radiative heat flux at the tube wall. Figure 3 depicts 
the corresponding comparison between the Nusselt 
numbers. Again the two methods are in excellent 
agreement and the above-mentioned trend portrays 
itself quite clearly. 

To establish the validity of the combined 
convection-radiation heat transfer model a number of 
cases were compared to those presented by Tamehiro 
et al. [7] for the limiting case of no scattering. These 
verification runs, which were made over wide ranges of 
optical thickness, conduction-radiation parameters 
and mass-loading ratios, showed almost negligible 
differences between heat transfer predictions. The 
reason for such good comparison is largely attributed 
to the use of similar eddy diffusivity models in the 
laminar sublayers and turbulent core. Changing the 
eddy diffusivity in the sublayers to the one suggested 
by Deissler [ 131 resulted in an approximate difference 
of 10yOcompared with those presented by Tamehiro ot 
af. [7]. Although the verification runs are not pre- 
sented here one can still roughly compare results in 
Fig. 4 by simply multiplying their con- 
duction-radiation parameters (NH) by a factor of 8. 
(The factor of 8 is a direct result of basing the 
conduction--radiation parameter on the inlet tempera- 
ture rather than the wall temperature as done by 

171. 
The total local Nusselt number NM, mixed mean 

temperature (I,,. and radiative heat flux ratio q’/q’ 
(note that this ratio is analogous to the ratio of 
radiative to total Nusselt number) vs. axial distance 
(x/R)/RePr are shown for various representative 
convective and radiative parameters in Figs. 2- 18. In 
all the following results, assumptions (5). (6) and (7) 
have been invoked due to the lack of better knowledge, 
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as well as assumption (1) and (3) in order to limit the 
scope of the results somewhat. Further, it is assumed 
that C, >> 1. Nevertheless, the results presented here 
qualitatively cover an extremely large range of con- 
vection and radiation parameters which are condensed 
into the following four cases. 

(I) The effect of the conduction-radiation para- 

meter M, and the optical thickness based on the 
absorption coefficient KR, are shown in Figs. 4- 9 for 
Nu, O,, and qK/q”’ vs. axial distance, respectively ; the 
first three pertain to the hot wallcold medium case, 
while the other three show the trends for the cold 

wallLhot medium case. 
(2) The qualitative influence of the single scattering 

albedo w, and the degree of anisotropy a, on Nu, O,, 
and q’/qr variations, respectively. are shown in Figs. 
10, 11, and 12. 

(3) Case 3 represents the influence of the specific 

mass loading ratio C,, and wall temperature T,/T,. 
The influence of these parameters on Nu, O,, and 
qR/q’r are shown in Figs. 13, 14, and 15, respectively. 

(4) Finally, the influence of the gas Reynolds num- 
ber on NM, O,, and qR/q” is shown in Figs. 16, 1 I, and 

18, respectively. 
Case 1. Figures 4,5 and 6 demonstrate the influence 

of the conduction-radiation parameter M, and opti- 

cal thickness based on absorption KR, on the overall 
heat transfer rates in non-scattering turbulent suspen- 

sion flows for the case of a heated wall. Due to the non- 
linear radiative contribution no fully-developed tem- 
perature profile, and consequently no asymptotic 
Nusselt number, develops. Rather, for the heated-wall 
case, the Nusselt number goes through a minimum at a 
certain downstream location, behind which it tends to 
increase again. The location of the minimum moves 
towards the inlet with increasing importance of radi- 

ation. Radiation becomes more dominant with 
decreasing M, due to the accompanying rise in 

temperature level with its increased radiative emission. 
The appearance ofa minimum Nusselt number may be 

explained as follows: downstream from the inlet total 
flux as well as the relevant temperature difference, T, 
- T,,, decrease monotonically. However. while in the 
convection-only case q?‘decreases always more rapidly 

that, T, - T,,, this is not the case if strong radiation 
is present, as can be seen from the continuously 
increasing values for qR/q’ (cf. Fig. 6). 

In the optically-thin limit KR = 0 (no absorptton 
and emission takes place in the medium), as well as in 
the optically-thick limit KR+ T. (radiation is absorbed 
directly at the point of emission), the radiative contri- 
bution must vanish. Thus, the Nusselt number must go 
through a maximum at a certain optical thickness as is 

clearly demonstrated in Fig. 4. 
The behavior of mixed-mean temperature O,,, and 

relative radiative flux qa/q”‘corresponds to the Nusselt 

k&l-3 MO-2 
3 4 56789 2 3 4 56799 2 3 1 5 9 7 99*‘“’ ,, f 

I I ’ ’ . . ..E 

Tw/Ti, = 2.0 1:: 
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% 
Ii,.. 

E.. 
--(D 

m-- MFl TO --In 
u) .. 

o l.OOE-01 1.0 MR % --t 
t .. 

o-- A l.OOE-02 1.0 0 l.OOE-02 5.0 --In 

+ l,OOE-03 1.0 9 LOOE-02 1010 .. N Iv’- 
x l,OOE-02 0.1 x CONVECTION 

% I 
. . 5 

2 3 4 56799’ 2 3 4 99799’ 2 3 4 5 6799’ 2 3 4 56799 zI 
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WRZiLPR 

MO-2 Ml-1 

FIG 4. Influence of optical thickness and conductionxonvection parameter on Nusselt number 
development-heated wall. 
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number behavior, i.e. the radiative flux increases with 
decreasing M,, resulting in a more rapid change of O,,. 
Similarly, there exists an optimal optical thickness, 
resulting in a maximal radiative flux with correspond- 
ing maximal mixed-mean temperature build-up. 

Figure 7 shows the Nusselt number curves for the 
corresponding hot medium-cold wall situation. In this 
case the fluid temperature drops as it moves along the 
tube and, therefore, the importance of radiation is 
reduced with axial distance. The presence of radiation 
still results in higher Nusselt numbers than the 
convection-only case. However, as opposed to the cold 
medium-hot wall situation, no relative minima in the 
Nusselt numbers are observed. Figure 8 depicts the 
corresponding mixed-mean temperature variations 
with axial position for the cold-wall case. The trends 
are similar to the previous one; i.e. higher levels of 
radiation result in more rapid development of the 
mixed-mean temperatures. Figure 9 demonstrates the 
behavior of radiative heat flux ratios for the hot 
mediumcold wall condition. These curves show that 
the relative radiative heat flux contribution increases 
to a maximum value at a certain axial position and 
decreases beyond that point. Also, it is observed that 
the maxima become more pronounced in cases with 
relatively lower radiation (small KR or large MR). This 
behavior is due to the fact that in situations where only 
a small amount of radiation is present, the fluid core 
remains hot for a longer period of time while, at the 

same time. the layers of fluid closer to the tube wall are 
cooled by convection. Establishment of such a tem- 
perature gradient causes an increase in the radiative 
heat flux until a point where the core temperature 
starts dropping. The corresponding mixed-mean tem- 
perature variations show that, indeed, the maxima for 
the radiative heat flux profiles occur at the same axial 
position where the mixed-mean temperature curves 
start their rapid decline, indicating the cooling of the 
fluid core. 

Case 2. It is seen that an increase in scattering 
(increasing w) causes a decrease in radiative and, 
therefore, overall heat flux, even if absorption and 
emission are held constant (Fig. 12). This is due to the 
fact that, with increasing scattering, more and more 
radiation emitted in a hot region is scattered back 
towards the region of emission rather that travelling 
on towards colder parts. This increased resistance for 
transmission of radiation then causes a decrease in 
heat transfer (Fig. 10) and slows the development of 
the mixed-mean temperature (Fig. 11). As expected, 
the effect is particularly important in the case of strong 
backward scattering (a, = - l), especially for large 
scattering albedo. On the other hand, in the case of 
strong forward scattering (ai = + 1) much of the 
scattered energy behaves similar to transmitting radi- 
ation, thus reducing the influence of scattering. It is 
interesting to note that the reduction in heat transfer 
rates is rather small for fairly large values of w, say w = 
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0.5, regardless of degree of anisotropy. 
While the reduction of heat flux rates and Nusselt 

number is substantial for large values of w (Fig. lo), 
overall heat transfer rates still remain an order of 
magnitude higher (for the present case) than for the 
convection-only case (cf. Fig. 4). 

fraction of a diameter downstream from the inlet (Fig. 
13). 

Case 3. Figures 13, 14 and 15 demonstrate the 
influence of wall temperature level TJTi, and solid-to- 
gas mass loading ratio C, on heat transfer rates. This is 
shown for constant and moderate values of the 
conduction-to-radiation parameter M, (based on inlet 
temperature), and optical thickness KR for a non- 
scattering medium. It is seen that, for increasing C,, the 
curves for i\iu and 0,, are basically just stretched by a 
factor of (I+ C,) in the axial direction. This will, 
obviously, always be the case as long as 0,: 0/, as can 
be seen by adding equations (l), and (2). It should be 
borne in mind, however, that an increase in mass 
loading ratio C, will usually be accompanied by a 
similar increase in absorption coefficient K. 

Case 4. To show the influence of Reynolds number 
on heat transfer rates the same basic radiation and 
suspension parameters M,, C, and o as in Case 3 were 
chosen. As is seen from Figs. 16 and 17, the influence of 
Reynolds number is much less pronounced. As expec- 
ted, heat transfer rates and mixed-mean temperature 
development are increased with increasing Reynolds 
number as a direct result of the increased eddy 
diffusivity. For comparison, a laminar case with identi- 
cally-zero eddy diffusivity is also included. The in- 
creased convection is further demonstrated in Fig. 18. 
While convection is increased, radiative fluxes are 
decreased somewhat due to the faster developing 
temperature profile, resulting in significantly lower 
values for qR/qT. 

As expected, the level of tube wall temperature The interaction between radiation and laminar or 
influences heat transfer rates profoundly: if the wall turbulent forced convective heat transfer in a 
temperature is doubled, near the inlet the radiative flux gas-particulate suspension flow through a circular 
increases to roughly 16-fold while the convective rate tube and the effects of various radiation and con- 
approximately doubles. This is shown in Fig. 15. At vection parameters on Nusselt numbers, mixed-mean 
high temperatures radiation may be so strong that the temperature, and relative magnitude of radiative flux 
Nusselt number starts to increase after only a minute have been discussed in some detail. The results ob- 
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tained may be summarized as follows: 
(1) For the case of T,/Ti > 1, if radiation effects 

must be included, no fully-developed temperature 
profile can be expected to form. Generally, the Nusselt 
number tends to go through a minimum at a certain 
downstream location, behind which it tends to in- 
crease. For strong radiation this minimum may be 
extremely close to the inlet. Of course, far downstream 
when O,, --) 0, one may linearize the radiation 
contribution resulting in fully developed profiles. How- 
ever, this is of little practical importance since the 
Nusselt number varies drastically over the region of 
maximum mixed-mean temperature change. This is 
quite unlike the convection-only case where the largest 
portion of the mixed-mean temperature change occurs 
essentially at the asymptotic Nusselt number. By 
examining Figs. 4 and 5 it is evident that for the 
convection-only case approx. 95% of the mixed-mean 
temperature change occurs at the asymptotic Nusselt 
number whereas for cases with radiatively participat- 
ing particulates the Nusselt number increases mark- 
edly over the region of the steepest mixed-mean 
temperature gradient and is still increasing at 8, - o,,,,,, 
= 0.01. Hence the asymptotic value for the Nusselt 
number becomes of less importance with increased 
radiative contribution. 

Even in the cold-wall case, T,,,/T < 1, where an 
asymptotic Nusselt number does establish itself, this 
asymptotic value is of relatively small importance as it 
also is established too far downstream (Figs. 7 and 8). 

(2) While the differential approximation consis- 
tently overpredicts radiative wall fluxes slightly, these 
errors do not accumulate downstream. Thus, this 
approximation may be used with good accuracy under 
all optical conditions. 

(3) For every flow situation there exists an optimum 
solid-loading ratio for which maximum heat transfer 
rates are achieved: while adding solids to the flow 
increases the thermal entry it also increases the optical 
thickness of the mixture, resulting in maximum radi- 
ative heat transfer rates at some intermediate optical 
thickness. 

(4) Radiative scattering tends to decrease heat 
transfer rates even if emission and absorption remain 
unaffected. However, scattering is unimportant for up 
to relatively large values of the single scattering albedo. 
Effects of anistropic scattering are important only for 
very large values of the single scattering albedo. 

(5) Even with particle radiation present, the solid-to- 
gas mass loading ratio simply tends to stretch the 
thermal entry. Thus, if the particles are sufficiently 
small, and in the absence ofchemical reactions, particle 
and fluid temperature remain essentially the same. 
Consequently, one could combine the two energy 
equations to form a single continuum. 

(6) In turbulent flow the radiative heat transfer 

does change with Reynolds number and is, therefore, 
not independent of the flow field. The fraction of 
convective as compared to total heat transfer rate 
increases with increasing Reynolds number as a result 
of the increased eddy turbulence. 
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COUPLAGE DE RAYONNEMENT ET DE CONVECTION DAN.5 L’ECOULEMENT EN 
CONDUITE DUN GA2 ABSORBANT, EMISSIF ET ANISOTROPIQUEMENT DIFFUSANT 

Resume-On developpe une procedure numerique pour ttudier I’interaction du rayonnement thermique, de 

la conduction et de la convection dans un ecoulement d’une suspension dans un gaz a I’intirieur dun tube a 
section circulaire. Une analyse est conduite sur l’tcoulement turbulent dun milieu multiphasique avec des 
particules qui absorbent, emettent et diffusent de facon anisotrope, les parois ttant chauffees ou refroidies a 
temperature constante. La contribution du rayonnement thermique est obtenue en modifiant I’approxima- 

tion dilTerentielle pour une diffusion anisotrope lineaire qui est montree Btre precise par comparaison avec 
quelquessolutionsexactes. Lesequationsdilferentielles sont troistquations(non-lineaires)coupleesqui sont 
resolues numeriquement par une mtthode implicite aux differences finies avec une procedure iterative. Les 

risultats sont resumes pour de larges domaines des paramitres. 

STRAHLUNG UND KONVEKTION IN ABSORBIERENDER, EMITTIERENDER UND 
ANISOTROP STREUENDER STAUB-GAS-ROHRSTRGMUNG 

Zusamrnenfassung-Ein numerisches Verfahren zur Untersuchung der Wechselwirkung zwischen 
thermischer Strahlung sowie Wlrmeleitung und Konvektion in einer sich therm&h ausbildenden 
Staub-Gas-Stromung in einem Kreisrohr wurde entwickelt. In der vorliegenden Studie wird eine Analyse 
der turbulenten Stromung eines mehrphasigen Mediums mit absorbierenden, emittierenden und anisotrop 
streuenden Teilchen durchgefilhrt, wobei die Stromung won einer Wand konstanter Temperatur beheizt 
oder gektihlt wird. Der Beitrag der thermischen Strahlung wird durch Modifikation der differentiellen 
Nlherung entsprechend der linear anisotropen Streuung erhalten, die sich im Vergleich mit einigen exakten 
Losungen als genau erweist. Die maDgebenden Differentialgleichungen werden als drei gekoppelte 
(nichtlineare) Gleichungen hergeleitet, die durch ein implizites finites Differenzen-Verfahren mit iterativer 
Verarhitung &r einzelnen Terme fur die Staubteilchen numerisch geldst werden. Die Ergebnisse sind fur 

groBe Parameterbereiche zusammengefafit. 

B3AMMOCBJI3AHHbIfi JIYYHCTbIfi H KOHBEKTHBHbIfi TEHJIOIIEPEHOC 
IIPM TEYEHMW B TPY6E IlOFJIOIIIAIOIlJHX, M3JlYt4AIOIIIMX M AHM30TPOlIHO 

PACCEMBAIOIIHIX CMCTEM 4-A3-TBEPHbIE t-IACTMHbIw 

AHHOTB~WR - l@WIOwteH YIICJIeHHbIii MeTOn BCCJIenOaaHHR B3aIIMOnehCTBWI TeIIJIOBOrO H3JIy’IeHAK 

C TeIUIOnpOBOnHOCTbIO II KOHBeKIIIIeii npn TepMA’IeCKB pa3BHTOM Te’IeHBB B KpyrnOti Tpy6e BJBcmeH- 

HbIx B ra3e TIIepnbIx YaCTnII. BbInOJIHeH aHann Typ6yJIeHTHOrO Te’IeHnR MHOrO+aSHOii CpenbI C 

nornomabouuwu, u3ny~aIouuibnI H amisorponno pacceeaaiomehle TsepnbtMn Yacrriuabiu B sanane, 
OrpaHHVeHHOM HarpeTbIMu Hnll OXJIaXUeHHbIMH CTeHKaMII nOCTOKHHOfI TeMncpaTypbI. c nOMOIIIbH) 

Monsf$niueposannoro ae+~epesueanbsoro npe6nwmeeas, B KOTOpOM y’I&ITbIBaeTCs JInH&HO aHII30- 

TponHoe pacceaaaeue, npoBeneH paweT Tennoaoro asny9eses, AOCTOBepHOCTb pe3yJIbTaTOB KOTOpOrO 

“pOBepeHa COnOCTaBncHIIeM C HeKOTOpbIMu TOqHbIMn peIIIeHnsMII. BbIBeneHbI OCHOBHbIe .LIIN$~~H- 

nBa.“bHbIe ypaBHeHAa B Bane TpeX a3anMOCBR3aHHbIx (HeJIIIHefiHbIX) COOTHOIIIeHui?, KOTOpbIc pcIIIeHbI 

SV.?JIeHHO HeRBHbIM BTepaunOHHbIM MeTOnOM KOHeYHbIX pa3HOCTeii. Pe3yJIbTaTbI o606meHbI Ha IIIA- 

poKne nnana3oHbI napaMeTpoB. 


