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Abstract—A numerical procedure has been developed to investigate the interaction of thermal radiation with
conduction and convection in thermally developing gas—particulate suspension flow through a circular tube.
In the present study an analysis is performed on the turbulent flow of a multiphase medium with absorbing,
emitting and anisotropically scattering particulates bounded by a heated or cooled constant-temperature wall.
The contribution of thermal radiation is obtained by modification of the differential approximation to
accommodate linear—anisotropic scattering, which is shown to be accurate by comparison with some exact
solutions. The governing differential equations are derived as three coupled (non-linear) equations which are
solved numerically by an implicit finite difference method with iterative procedure of the particulate terms.
The results are summarized for wide ranges of parameters.

NOMENCLATURE ) )
f { singl ol 2 R, pipe radius;
(siur ace arca ol Single partnc/: ¢ = ndp; Re,, gas Reynolds number i#,D/v;
egree of anisotropy, —1 <a, < + 1 , radial distance :
specific heat at constant pressure; T temperature; ’
dimensionless particle to gas film " ’ axial velocit)’/'
coefﬁcxent; . . u, average or bulk velocity ;
specific mass loading ratio; V solid particle volume:
. . . pn b4
plpe. cillazjqeter, ) X, axial coordinate;
t}?artl'c ¢ fl.an.letc;, ) vtz dimensionless radial coordinates;
annng riction aﬁ:tor, . . £, eddy diffusivity, wall emissivity ;
dlmensLo_r_l_l_ess fluid velocity function, n, dimensionless radial coordinate, r/R;
Pt/ 2psts; o . KR, optical thickness based on absorption;
dimensionless fluid diffusivity function, 0, dimensionless temperature;
(I ey Priv)y ) Al dimensionless temperature difference,
dimensionless radial variables; 0,—0,;
dimensionless axial variable; U d;namic viscosity ;
heat-transfer coefficient for pipe flow; v kinematic viscosity:
heat-transfer coefficient for flow over p density;
solid particle; o ) a, Stefan-Boltzmann constant ;
tl}erma! conductivity of fluid; Tps total optical thickness, kR/(1 —w);
dimensionless  turbulent  Reynolds dimensionless axial coordinate :
n.umber; . L w, single scattering albedo, 0<w < 1.
dimensionless conduction-radiation
parameter, k /46T R Subscripts
local Nusselt number ; 1 fluid :
number of solid particles per unit volume ; H heat :
Prandtl number, u,C /k ; i inlet :
dimensionless particle velocity function, M momentum :
n,V oo /20, V oty m, single-phase mean;
heat flux; mm, suspension mixed mean;
dimensionless heat flux, ps particle;
qR/k T w, wall.
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Superscripts
+, dimensionless turbulent quality;
C, convective ;
R, radiative;
T, Total.
INTRODUCTION

THERE is a large variety of industrial applications in
which the heat transfer rates in flowing mixtures of
gases and solid or liquid particles are of importance.
These applications range from waste heat extraction
from flue gases, nuclear reactor cooling (steam—
droplet mixtures), and solid-propellant rockets
(product gases and metallic particles used to
increase the thermal conductivity of the propellant
resulting in hgher thrusts), to MHD generators (pro-
duct gases seeded to improve electrical conductivity).
Probably the most important applications of gas—
particulate mixtures today are in the area of com-
bustion of fuel for power production (oil burning,
pulverised-coal combustion and, in the near future,
combustion of coal in fluidized beds).

The increase of heat transfer rates is a prominent
characteristic in multiphase suspensions. The particles
influence heat transfer rates by disturbing the laminar
or turbulent flow structure. This occurs in several
ways: (i) penetration of solids through the buffer layer
and into the laminar sublayer causes a thinning of the
viscous sublayer and a reduction in the resistance to
convective heat transfer; (ii) the presence of solids
may cause a damping of the convective eddies and
adversely affect the turbulent transport of energy ; and
(iii) energy exchange between the laminar sublayer and
turbulent core is promoted by the radial motion of the
particulates. Furthermore, the high volumetric heat
capacity of the solid compared with that of the fluid
prolongs the thermal entry length and increases the
two-phase heat transfer. In addition to the above
phenomena, in high-temperature applications the in-
teraction of radiant energy with the participating
medium is of importance. This interaction can pro-
foundly increase the overall heat transfer rate due to
the large absorptivity of the cloud of fine particles.

Experiments by Farbar and Morley [1] first dem-
onstrated that it was possible to increase heat
transfer rates by adding solid particles to gas flow. The
first analytical treatment made on heat transfer in a
turbulent suspension has been published by Tien [2],
who predicted higher heat transfer rates for the
thermal entry length. Comparison of experiments by
Farbar and Depew [3, 4] with theory [2] demon-
strated that even in the absence of high-temperature
effects the convection in gas—particulate suspensions is
not well understood. However, experiment [ 3, 4] also
shows that, at moderate temperatures, the heat trans-
fer is only moderately increased unless the particle
mass loading ratio becomes very large. Echigo et al. [ 5,
6] and Tamehiro et al. [ 7] have performed numerical
analyses on the heat transfer with fully developed
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laminar and turbulent flow of gaseous suspensions
with radiatively absorbing and emitting particulates
between parallel plates and in circular tubes. The only
work considering combined convection radiation
with scattering appears to be the one by Chawla and
Chan [8]. However, their study is limited to laminar
flow between parallel plates with isotropic scattering.
To date, no analysis has been performed to include the
important effects of anisotropic radiative scattering in
gas—particulate suspensions.

It is the purpose of this paper to investigate the
combined convective and radiative effects in turbulent
tube flow of an absorbing, emitting and
linear -anisotropically scattering gas—particulate sus-
pension. The governing differential equations are
derived as three coupled (non-linear) equations, which
are solved numerically by an implicit finite difference
method with iterative procedure of the particulate
terms. The contribution of thermal radiation is ob-
tained by modification of the differential approxi-
mation to accommodate linear—anisotropic scattering.
Results are reported as a parametric study of the
interaction of predominant convective and radiative
parameters and their effects on the Nusselt number,
mixed-mean temperature and radiative flux.

ANALYSIS

Assumptions

In the present investigation the following major

simplifying assumptions are made:

1. The pipe wall is isothermal (T, = const) and
gray.

2. The flow field of the two phases is hy-
drodynamically fully developed and has a
laminar or turbulent velocity distribution.
The temperatures of the particles and the gas
are equal and constant at the inlet.

3. The fluid and particle properties are tempera-
ture independent.
4, The particles are spheres of uniform size and

their thermal conductivity is large enough to
neglect radial variation of temperature within
the sphere (small Biot number).

5. The particles are uniformly distributed
throughout the pipe cross-section and are suf-
ficiently small and numerous to be considered
as a continuum.

6. The time-mean velocities of the two phases
are equal and the presence of the particles has
no effect on the velocity profile, eddy diffusi-
vities for heat or momentum, or the friction
factor of the gas.

7. The eddy diffusivity of the particles is
negligible.

8. The energy transport by collisions among
particles or with the wall are negligible.

. Viscous dissipation is not included.

10. The solids are gray absorbing, emitting and

linear—anisotropically ~scattering particu-
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lates; the gas is transparent to radiation.

11.  The radiative transfer in the axial direction is
neglected as compared with the radial heat
transfer ; this has been shown to be a good
approximation except for regions close to a
temperature jump [9].

Some of the above assumptions are not necessarily
very good. For example, assumptions (5), (6), and (7)
are made primarily because at present no theory or
experimental correlations exist to predict the influence
of these effects. However, if strong radiation is present
the introduced inaccuracies become less and less
important. A number of the above assumptions are
invoked only in the presentation of parametric results,
ie. the theory developed below is not limited by
assumptions (1), (3), (5), (6), and (7). Of course, if
assumption (3) is to be relaxed, no hydrodynamically
fully developed velocity profile exists, and simul-
taneous solution of the momentum equation becomes
necessary. However, in the light of the uncertainties
present in the evaluation of gas-particulate interac-
tion, it may be sufficient to assume negligible radial
velocities, reducing the continuity equation to pu =
pu(r) only. In the following analysis, assumption (3) is
relaxed in this fashion, while for the presentation of
results only temperature-independent properties will
be employed.

Basic equations

Based on the foregoing postulations an energy
balance in the cylindrical coodinate system (see Fig. 1)
yields the basic equations governing the temperature
field. For the gas phase

T
Pfcf“fof =nh,A,T,— T,

10 oT
+ ré;[r(k, + p;Crey f) f:l, (1)

A
cr

and for the particulates,
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. (qu)’ (2)

10 oT
SV op Coi o2 | -
+r6r[rnp wPrCoti.p 5r] rdr

subject to the boundary conditions

oT
. S — 0 vy=0-
=00 x=0: T =T,=T,

-0
4 r o (3)

r=R:T,=T,

These equations are essentially the same as the ones of
Tien [2], with the exception that the present for-
mulation allows the incorporation of a more sophisti-
cated radiation model, similar to that of Tamehiro et
al. [7]. Note that there may be a temperature discon-
tinuity between the wall and the particles at the wall,
due to the absence of a conduction term in equation
(2). In the absence of thermal radiation there would be
no temperature slip, due to assumption (6). If radiation
is important, the temperature slip can be evaluated
from equation (2) as

nh, AT, —T,)|, -r =li(qu)|,=R. (4)
ror
The exact equations for the radiative heat flux in 1-D,
gray, linear-anisotropically scattering media have
been derived by Azad and Modest [ 10]. There are two
reasons for limiting the discussion to linear—
anisotropic scattering: (1) Exact analytical solu-
tions are practically impossible to obtain for higher-
order scattering phase functions. This is due to the fact
that the azimuthal direction cannot be eliminated by
integration as in the planar case, resulting in higher-
order integral equations in the radial and local di-
rection coordinates. (2) The accuracy of a
linear-anisotropic approximation to realistic scatter-
ing phase functions in heat transfer applications
without collimated irradiation was established in a
previous paper [12]. There any forward-scattering
peak was removed from the phase function and treated
as transmitted. Backward-scattering peaks were re-

o . L . .
n,V 0,Cot, T, = n A, (T, — T,) moved. in a similar fashlpn, while the rempant of the
ox scattering phase function was approximated by
= " L v L .\
i R
I o
[
t
+ - - -
:
|
i
L L L Ll L Ll
—=x, ¢
X= O

Fic. 1. Coordinate systems.
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linear-anisotropic scattering. Using the resulting
modified scattering coefficient and modified phase
function gave excellent prediction of radiative transter
rates as long as the phase function was relatively
smooth and had insignificant back-scattering.

Incorporation of the exact integral formulation for
linear-anisotropic scattering would lead to excessive
computer time demands in the present flow problems.
However, they also showed that their modified differ-
ential approximation [ 11, 12] yields results to within a
few percent accuracy for any realistic temperature
profile. Thus this model is used here as well as the
results in [10], viz.

1¢ 4 ogq® 3x? a,w 17 .
R ) = ] — —— + —
r(‘*r(r Pr> [l—w 3 =3k

Ye
= 4ok —2, (5)
or
subject to the boundary conditions
-0 aR=0"
r=0: qg"=0; (6)
dg® 1 2—¢
=Rt [R T 2(7)"]‘1” = 4on{ T3~ T}1,

where ¢ is the emissivity of the wall.

In equation (5) a, represents the degree of aniso-
tropy, where —1<a,<+1. For a,>0 forward
scattering dominates, while a; < O results in mostly
backward scattering. In the present case of a two-
phase flow with radiatively participating particulates
through a circular tube, equations (1), (2), and (5) are
the governing equations of the system with T, T, and
q® to be determined.

The 3-layer turbulent velocity distribution for fully
developed flow, presented in Kays [ 13] for the laminar
sublayers, and as proposed by Reichardt [14] for the
turbulent core, are used and given by:

laminar sublayer:

+ +

ut =yt <yt <5

bufler layer:
u"=-305+50Iny*, 5<y*<30; 7

Turbulent core:

u+=5.5+z.51n[y+w], +530.

1+2(r/R)?

The momentum eddy viscosity for the gas, gy, is
described by the 2-layer model. The wall region (y* <
40), as described by the Van Driest model modified by
Spalding [15], results in

n _ K [eku’_l_ku+ _Gkut) ()

.
21 3 [Y <40

(8a)

where k = 0407 and E = 10.
In the turbulent core the Reichardt model [14]
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8;—“,' = kl; [1—(/R)¥][1+2(r/R)*], y* >40(8b)

is employed. In the above equations the standard non-
dimensional quantities

+

%Re JUB), R* = Re (/(f/8)
9)

u v
TATO

have been introduced.

The eddy diffusivity for heat, ¢, is calculated
using the standard assumption that the turbulent
Prandt! number is approximately equal to unity, i.e.
Pr, = gyfey ~ L

The definition of a mixed-mean temperature and,
therefore, of a Nusselt number presents some problem
if the specific heats of gas and particulates are
temperature-dependent. Fortunately, strong tempera-
ture dependence of specific heats is rare, and it is
assumed here that it may be approximated by

T nr T fy
cf=c,i<—T%> , C,= C,,i<~T~f’> . (10)

i

Now defining an overall mixture mixed-mean tem-
perature in terms of enthalpies as
+mh

i e+ 1R = 1t (11

Smm p'tpmm
where
2 R
hf'”z;—zf plgh,rdr, (12)
psy R® Jo
2 R
hy, = ‘———J nV pphprdr, (13)
n,V,p,u, R? Jo
leads to
2 (R
Tfm=:~mJ pugC,Tprdr, (14)
psu;CraR* Jo
2 R
T,==—— n,V pu,C.T rdr
p anpP,,“pCmeZ J;) p" pFp¥ppt P
(135)
T (M +n )i, Cp T, +(1 +nf)rr'1pCmepm'

mm

(T+nmp, €+ (L4+n0,C o
(16)

The mixture mixed-mean temperature can also be
evaluated through axial integration from
x qux

Tpm=T; — 2R f (17

1} mefmm+mpCmm

where g' is the total heat flux (convective and radi-
ative) at the tube wall, i.e.

q" = ¢¢ + ¢%, (18)
where the convective flux is evaluated from
oT
c s
= —k,—L , 19
q 5 o ek (19)

and the radiative flux, g%, is found from equation (6).
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The Nusselt number for the gas—particulate suspen-
sion is defined as

kR 2¢'R
Tk k{Tpm=To)

is used, equation {16}, Nu,

Nu, = (20

Ifradialintegration for T,
is evaluated from

(21)

For axial integration, equation {17), on the other hand,
Nu, is determined from

t . 1 AT
Nux = Ef (mef,,,m + m,,Cp,,,m) m —d-)-c-"”
(22)
The governing equations may be non-
dimensionalized by introducing the following
quantities:
T T
9,=ﬁ; 0y =75 A8y =0, = 0
_ 4R X,
TTTTRTR
R\? d
C, = @ dn,Nu,A,; Nu, = ,:ﬁ”,
C — m}’ nPVPpPuP
2T B
"y Prig 23)
; 2psuR #5iCri __kp
Re; PP Pr; K My = TR’
Lpau, ke ey Pry o _ Cp
fl"zg};}’frkﬁ v Pr, s Cy
py = L1V olstts Vol Cotrin, , _ Co
2 nV ooty ki i
This leads to
o0, 26
,g;;zzepr,é; =C, (0, - 8f)+ { . 5:] (24)
21p3CaRe; Prz (q? =C {6, -8 )
10 Bl
+ E "-( _R)7 (25)
nﬁrz[m fn} ndn
R 2
id 3{KR} . a{w) + iz o
ndy dn 1-w 3 1
kR 594
= . (26
M, ﬁn (26)
X=0;8,=0,=1;
a4, _
=0; L =0;¢8=0; 27
0; o g 27
n=1:0,=0,
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R
3-‘1—( ) + 2(2 - )quR S
nd My

For stability of numerical calculations, equations
{24} and {25) are further transformed by using

z=m[kR{(I-n+1]; ¢ = In[Cx+1],
fo = (kR,e™*)2; fy=(kR,+ 1)/(kR,+ 1 —¢7),
kR, = 04 ./(f/8) Re;; g, = Ce™" Re, Pry,

where z is a stretched radial coordinate which places a
lot of nodes near the wall, and ¥ is a stretched axial
coordinate, which places a lot of nodes near the inlet,
depending on the choice for the constant C. Thus:

(28)

ot o0
fifsa, 5;;” =~ fyf5fs EZL
3 b
il {fz :i} +C,A0, 29)
oz az

o6 ¢ at
~ pafsts F:& + fo {Pz ”‘l}

10
- C,A8, — ggﬁ;{ﬁé"l (30)

o8
P1p3C,9, ‘5‘7’& =

The values for A0, = 0, — 0 are usually very small as
compared to 8, (combined with C, » 1). In fact, for
small particles without chemical reactions (such as
combustion), f and 8, are often so close that usage of
a single energy equation would be adequate. There-
fore, in actual numerical calculations the particle
energy equation (30) is replaced by one based on Af,,.
This is achieved by multiplying equation (29) by
P1PsCo/f1 fy and subtracting it from equation (30).

For the calculations of the radiative flux equally-
spaced nodes result in better numerical stability.
Therefore, equation (26} is not transformed with
respect to z. Rather, values of g* and 0, are passed back
and forth between equations (26) and (30) by the use of
splines.

Using the non-dimensionalization and transfor-
mations, the expressions for mixed-mean temperatures
become:

4 InfkR, + 1}
meOfm = k_Rk, J:) flf30fr[ezdzs (31
o 4 fln(kR,+ 1 ) 2
PamVpm = T p e*dz, )
3mt kR, 1o 1Pt
and
- “ +”p)f3m8fm + (I +nf)p3mC20pm
" (] +np)f3mm + (l +nf)p3mmc2
(radial integration), (33)
or
AT
SRERY S -
o famm + C2P3mm a4,
(axial integration). (34)
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Finally, the Nusselt number is evaluated from

) =R
Nu = ﬁ[m, (;):f . +}1ﬂ
{radial integration), (35}
Nu = iéﬂ’:'w+..czp.3_.m_’“ 4o
26 0.~0,.. dy
(axial integration). (36)

Comparison between results from radial and axial
integration schemes was used to check numerical
stability and served as a criterion to establish the
optimum number of radial nodes and axial stepping.

RESULTS AND DISCUSSION

Temperature profile

For completeness, the general trends of the
gas-particulate temperature profiles will be discussed
briefly before examining the heat transfer results. i one
neglects radiation (low temperature cases) for a flow of
a cold mixture through a hot tube (T /T, > 1), heat
transfer takes place as follows: The carrier gas gains
heat by convection from the tube walls, while the
particles gain heat from the gas due to the forming
temperature difference. Thus the heat-up of the par-
ticles lags behind that of the gas. However, if sub-
stantial particle radiation is present (higher tempera-
ture cases), this is not necessarily the case, due to direct
energy exchange between hot wall and cold particles.
Resuits show that the temperature of the particles is
higher than that of the gas in the central core while in
the proximity of the wall it is lower than that of the gas
with the intersection of both temperature profiles
moving toward the wall with decreasing Mg, and
increasing x/R. Similarly, the opposite is true if T /T
< L

Heat transfer results

To establish the accuracy of the numerical code the
predicted convective Nusselt numbers based on the
mixed-mean temperature were compared with analyti-
cal results for laminar and turbulent pipe flow for a
transparent gas {no particles} for Pr = 1. For laminar
flow the computed Nu was found to be within 0.3%; of
the theoretical Nusselt number for all values of
(x/R)/Re.Pr > 1073, For turbulent flow the radially
computed asymptotic Nusselt number, Nu  , is within
5% (high side for all Rep) of the modified
Dittus-Boelter formula Nu, = 0.021 Re)® Pr®*3 for
5000 < Re, < 100,000 (T,, = constant). Numerical
computing of Nusselt numbers within a few percent of
experimental results is a common problem for turbu-
lent flow because of the diffusivity schemes employed.
Thus various refinements in eddy diffusivity models
are normally included, such as those presented in Kays
[13], by modification of the diffusivity ratio of heat and
momentum to bring the final results into close cor-
respondence with experimental data. However, an
error within + 5% of the empirical formula for all
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turbulent Reynolds numbers investigated is certainly
within the required accuracy of most engineering
applications. Further verification of the code’s ac-
curacy was established by running gas-particulate
flows with varying mass-loading ratios. The code
accuracy and numerical results remained unchanged
from the gas-only case except for a shifting in the x-
coordinate by a factor equal to the equivalent specific
mass loading ratio (I +C,). as predicted by Tien [2].

The accuracy of the differential approximation as a
reliable radiation model was established by Azad and
Modest [ 11, 12]. In order to ascertain that errors from
the differential approximation would not accumulate
when applied to a long pipe, some test-runs were made
also using the exact integral formulation from [ 10] for
the radiative flux in equation (30). Figure 2 shows a
comparison between the mixed-mean temperatures for
various combinations of total optical thickness, 7, =
xR/{1 —w), and the conduction-radiation parameter,
M . The two results are in excellent agreement and the
dominant trend shown is that the mixed-mean tem-
peratures predicted by the exact solution lag behind
those obtained from the differential approximation.
The reason for this behavior is characteristic of the
differential approximation which always overpredicts
the radiative heat flux at the tube wall. Figure 3 depicts
the corresponding comparison between the Nusselt
numbers. Again the two methods are in excellent
agreement and the above-mentioned trend portrays
itself quite clearly.

To establish the validity of the combined
convection-radiation heat transfer model a number of
cases were compared to those presented by Tamehiro
et al. [7] for the limiting case of no scattering. These
verification runs, which were made over wide ranges of
optical thickness, conduction-radiation parameters
and mass-loading ratios, showed almost negligible
differences between heat transfer predictions. The
reason for such good comparison is largely attributed
to the use of similar eddy diffusivity models in the
laminar sublayers and turbulent core. Changing the
eddy diffusivity in the sublayers to the one suggested
by Deissler [ 13] resulted in an approximate difference
of 10%, compared with those presented by Tamehiro et
al. [7]. Although the verification runs are not pre-
sented here one can still roughly compare results in
Fig. 4 by simply multiplying their con-
duction-radiation parameters (N ) by a factor of 8,
(The factor of 8 is a direct result of basing the
conduction-radiation parameter on the inlet tempera-
ture rather than the wall temperature as done by
{71

The total local Nusselt number Nu, mixed mean
temperature 0,,,. and radiative heat flux ratio g%/gq”
(note that this ratio is analogous to the ratio of
radiative to total Nusselt number) vs. axial distance
(x/RYRePr are shown for various representative
convective and radiative parameters in Figs. 2-18. In
all the following results, assumptions (5), (6) and (7)
have been invoked due to the lack of better knowledge,
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as well as assumption (1) and (3) in order to limit the
scope of the results somewhat. Further, it is assumed
that C, >» 1. Nevertheless, the results presented here
qualitatively cover an extremely large range of con-
vection and radiation parameters which are condensed
into the following four cases.

(1) The effect of the conduction-radiation para-
meter M, and the optical thickness based on the
absorption coefficient xR, are shown in Figs. 4-9 for
Nu, 0, and g®/q" vs. axial distance, respectively ; the
first three pertain to the hot wall-cold medium case,
while the other three show the trends for the cold
wall-hot medium case.

(2) The qualitative influence of the single scattering
albedo w, and the degree of anisotropy a; on Nu, 0,,,,
and g®/q" variations, respectively, are shown in Figs.
10, 11, and 12.

(3) Case 3 represents the influence of the specific
mass loading ratio C,, and wall temperature T, /T,
The influence of these parameters on Nu, 0, and
q%/q" are shown in Figs. 13, 14, and 15, respectively.

(4) Finally, the influence of the gas Reynolds num-
ber on Nu, 0, and g®/q" is shown in Figs. 16, 17, and
18, respectively.

Case 1. Figures 4,5 and 6 demonstrate the influence
of the conduction-radiation parameter M, and opti-
cal thickness based on absorption kR, on the overall
heat transfer rates in non-scattering turbulent suspen-
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sion flows for the case of a heated wall. Due to the non-
linear radiative contribution no fully-developed tem-
perature profile, and consequently no asymptotic
Nusselt number, develops. Rather, for the heated-wall
case, the Nusselt number goes through a minimum at a
certain downstream location, behind which it tends to
increase again. The location of the minimum moves
towards the inlet with increasing importance of radi-
ation. Radiation becomes more dominant with
decreasing M, due to the accompanying rise in
temperature level with its increased radiative emission.
The appearance of a minimum Nusselt number may be
explained as follows: downstream from the inlet total
flux as well as the relevant temperature difference, T,
- T,.. decrease monotonically. However, while in the
convection-only case g7 decreases always more rapidly
thau T, — T,,,. this is not the case if strong radiation
is present, as can be seen from the continuously
increasing values for q®/q" (cf. Fig. 6).

In the optically-thin limit kR = 0 (no absorption
and emission takes place in the medium), as well as in
the optically-thick limit kR— » (radiation is absorbed
directly at the point of emission), the radiative contri-
bution must vanish. Thus, the Nusselt number must go
through a maximum at a certain optical thickness as is
clearly demonstrated in Fig. 4.

The behavior of mixed-mean temperature 0,,,, and
relative radiative flux ¢®/q" corresponds to the Nusselt
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number behavior, i.e. the radiative flux increases with
decreasing M p, resulting in a more rapid change of 0,
Similarly, there exists an optimal optical thickness,
resulting in a maximal radiative flux with correspond-
ing maximal mixed-mean temperature build-up.
Figure 7 shows the Nusselt number curves for the
corresponding hot medium-—cold wall situation. In this
case the fluid temperature drops as it moves along the
tube and, therefore, the importance of radiation is
reduced with axial distance. The presence of radiation
still results in higher Nusselt numbers than the
convection-only case. However, as opposed to the cold
medium-hot wall situation, no relative minima in the
Nusselt numbers are observed. Figure 8 depicts the
corresponding mixed-mean temperature variations
with axial positien for the cold-wall case. The trends
are similar to the previous one; i.e. higher levels of
radiation result in more rapid development of the
mixed-mean temperatures. Figure 9 demonstrates the
behavior of radiative heat flux ratios for the hot
medium—cold wall condition. These curves show that
the relative radiative heat flux contribution increases
to a maximum value at a certain axial position and
decreases beyond that point. Also, it is observed that
the maxima become more pronounced in cases with
relatively lower radiation (small kR or large M ). This
behavior is due to the fact that in situations where only
a small amount of radiation is present, the fluid core
remains hot for a longer period of time while, at the

same time, the layers of fluid closer to the tube wall are
cooled by convection. Establishment of such a tem-
perature gradient causes an increase in the radiative
heat flux until a point where the core temperature
starts dropping. The corresponding mixed-mean tem-
perature variations show that, indeed, the maxima for
the radiative heat flux profiles occur at the same axial
position where the mixed-mean temperature curves
start their rapid decline, indicating the cooling of the
fluid core.

Case 2. It is seen that an increase in scattering
(increasing ) causes a decrease in radiative and,
therefore, overall heat flux, even if absorption and
emission are held constant (Fig. 12). This is due to the
fact that, with increasing scattering, more and more
radiation emitted in a hot region is scattered back
towards the region of emission rather that travelling
on towards colder parts. This increased resistance for
transmission of radiation then causes a decrease in
heat transfer (Fig. 10) and slows the development of
the mixed-mean temperature (Fig. 11). As expected,
the effect is particularly important in the case of strong
backward scattering (@, = —1), especially for large
scattering albedo. On the other hand, in the case of
strong forward scattering (a, +1) much of the
scattered energy behaves similar to transmitting radi-
ation, thus reducing the influence of scattering. It is
interesting to note that the reduction in heat transfer
rates is rather small for fairly large values of w,say w =
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0.5, regardless of degree of anisotropy.

While the reduction of heat flux rates and Nusselt
number is substantial for large values of w (Fig. 10),
overall heat transfer rates still remain an order of
magnitude higher (for the present case) than for the
convection-only case (cf. Fig. 4).

Case 3. Figures 13, 14 and 15 demonstrate the
influence of wall temperature level T, /T, and solid-to-
gas mass loading ratio C, on heat transfer rates. This is
shown for constant and moderate values of the
conduction-to-radiation parameter M ; (based on inlet
temperature), and optical thickness xR for a non-
scattering medium. It is seen that, for increasing C,, the
curves for Nu and 6, are basically just stretched by a
factor of (1+C,) in the axial direction. This will,
obviously, always be the case as long as !, = 8,,ascan
be seen by adding equations (1), and (2). It should be
borne in mind, however, that an increase in mass
loading ratio C, will usually be accompanied by a
similar increase in absorption coefficient k.

As expected, the level of tube wall temperature
influences heat transfer rates profoundly: if the wall
temperature is doubled, near the inlet the radiative flux
increases to roughly 16-fold while the convective rate
approximately doubles. This is shown in Fig. 15. At
high temperatures radiation may be so strong that the
Nusselt number starts to increase after only a minute

fraction of a diameter downstream from the inlet (Fig.
13).

Case 4. To show the influence of Reynolds number
on heat transfer rates the same basic radiation and
suspension parameters M, C, and @ as in Case 3 were
chosen. As is seen from Figs. 16 and 17, the influence of
Reynolds number is much less pronounced. As expec-
ted, heat transfer rates and mixed-mean temperature
development are increased with increasing Reynolds
number as a direct result of the increased eddy
diffusivity. For comparison, a laminar case with identi-
cally-zero eddy diffusivity is also included. The in-
creased convection is further demonstrated in Fig, 18.
While convection is increased, radiative fluxes are
decreased somewhat due to the faster developing
temperature profile, resulting in significantly lower
values for gR/q”.

CONCLUSIONS

The interaction between radiation and laminar or
turbulent forced convective heat transfer in a
gas-particulate suspension flow through a circular
tube and the effects of various radiation and con-
vection parameters on Nusselt numbers, mixed-mean
temperature, and relative magnitude of radiative flux
have been discussed in some detail. The results ob-
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tained may be summarized as follows:

(1) For the case of T /T; > 1, if radiation effects
must be included, no fully-developed temperature
profile can be expected to form. Generally, the Nusselt
number tends to go through a minimum at a certain
downstream location, behind which it tends to in-
crease. For strong radiation this minimum may be
extremely close to the inlet. Of course, far downstream
when §,, — 0, one may linearize the radiation
contribution resulting in fully developed profiles. How-
ever, this is of little practical importance since the
Nusselt number varies drastically over the region of
maximum mixed-mean temperature change. This is
quite unlike the convection-only case where the largest
portion of the mixed-mean temperature change occurs
essentially at the asymptotic Nusselt number. By
examining Figs. 4 and 5 it is evident that for the
convection-only case approx. 95%; of the mixed-mean
temperature change occurs at the asymptotic Nusselt
number whereas for cases with radiatively participat-
ing particulates the Nusselt number increases mark-
edly over the region of the steepest mixed-mean
temperature gradient and is still increasingat6,, — 0,,,,
= 0.01. Hence the asymptotic value for the Nusselt
number becomes of less importance with increased
radiative contribution.

Even in the cold-wall case, T, /T < 1, where an
asymptotic Nusselt number does establish itself, this
asymptotic value is of relatively small importance as it
also is established too far downstream (Figs. 7 and 8).

(2) While the differential approximation consis-
tently overpredicts radiative wall fluxes slightly, these
errors do not accumulate downstream. Thus, this
approximation may be used with good accuracy under
all optical conditions.

(3) For every flow situation there exists an optimum
solid—loading ratio for which maximum heat transfer
rates are achieved: while adding solids to the flow
increases the thermal entry it also increases the optical
thickness of the mixture, resulting in maximum radi-
ative heat transfer rates at some intermediate optical
thickness.

(4) Radiative scattering tends to decrease heat
transfer rates even if emission and absorption remain
unaffected. However, scattering is unimportant for up
torelatively large values of the single scattering albedo.
Effects of anistropic scattering are important only for
very large values of the single scattering albedo.

(5) Even with particle radiation present, the solid-to-
gas mass loading ratio simply tends to stretch the
thermal entry. Thus, if the particles are sufficiently
small, and in the absence of chemical reactions, particle
and fluid temperature remain essentially the same.
Consequently, one could combine the two energy
equations to form a single continuum.

(6) In turbulent flow the radiative heat transfer
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does change with Reynolds number and is, therefore,
not independent of the flow field. The fraction of
convective as compared to total heat transfer rate
increases with increasing Reynolds number as a result
of the increased eddy turbulence.
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COUPLAGE DE RAYONNEMENT ET DE CONVECTION DANS L'ECOULEMENT EN
CONDUITE D'UN GAZ ABSORBANT, EMISSIF ET ANISOTROPIQUEMENT DIFFUSANT

Résumé—On développe une procédure numérique pour étudier 'interaction du rayonnement thermique, de
la conduction et de la convection dans un écoulement d’une suspension dans un gaz a 'intérieur d’un tube a
section circulaire. Une analyse est conduite sur I'écoulement turbulent d’un milieu multiphasique avec des
particules qui absorbent, émettent et diffusent de fagon anisotrope, les parois étant chauffées ou refroidies a
température constante. La contribution du rayonnement thermique est obtenue en modifiant I'approxima-
tion différentielle pour une diffusion anisotrope linéaire qui est montrée étre précise par comparaison avec
quelques solutions exactes. Les équations différentielles sont trois équations (non-linéaires) couplées qui sont
résolues numériquement par une méthode implicite aux différences finies avec une procédure itérative. Les
résultats sont résumés pour de larges domaines des paramétres.

STRAHLUNG UND KONVEKTION IN ABSORBIERENDER, EMITTIERENDER UND
ANISOTROP STREUENDER STAUB-GAS-ROHRSTROMUNG

Zusammenfassung—Ein numerisches Verfahren zur Untersuchung der Wechselwirkung zwischen
thermischer Strahlung sowie Wirmeleitung und Konvektion in einer sich thermisch ausbildenden
Staub—Gas-Stréomung in einem Kreisrohr wurde entwickelt. In der vorliegenden Studie wird eine Analyse
der turbulenten Stromung eines mehrphasigen Mediums mit absorbierenden, emittierenden und anisotrop
streuenden Teilchen durchgefiihrt, wobei die Stromung won einer Wand konstanter Temperatur beheizt
oder gekiihlt wird. Der Beitrag der thermischen Strahlung wird durch Modifikation der differentiellen
Niherung entsprechend der linear anisotropen Streuung erhalten, die sich im Vergleich mit einigen exakten
Lésungen als genau erweist. Die mafBgebenden Differentialgleichungen werden als drei gekoppelte
(nichtlineare) Gleichungen hergeleitet, die durch ein implizites finites Differenzen-Verfahren mit iterativer
Verarbeitung der einzelnen Terme fiir die Staubteilchen numerisch gelost werden. Die Ergebnisse sind fiir
groBe Parameterbereiche zusammengefaft.

B3AMMOCBS3AHHBIN JYUHUCTBI U KOHBEKTUBHBIN TEIJIONEPEHOC
[MTPM TEYEHUHU B TPYBE HNOIJIOIMAIOMUX, U3NMYHAIONIUX U AHHU3OTPOITHO
PACCEUBAIOUINX CUCTEM «[A3-TBEPABIE YACTHULbI»

Annotauns — TIpeaoxeH YUCICHHBIH METO] HCCIEAOBAHHA B3aUMOEHCTBUA TEMIOBOTO H3JIyYEHHS
C TENJIONPOBOIHOCTBIO H KOHBEKLMEH IPH TEPMUUECKH PA3BHTOM TEHEHMM B KPyIJoH Tpybe B3BelueH-
HBIX B rase TBEPABIX YacTHIl. BbINOJHEH aHaiu3 TypOYJIEHTHOro TeyeHMs MHorodasHo# cpeast ¢
NOTNOIIAIUMMH, M3JIY4aIOLIMMH ¥ AHH3OTPONHO PACCEMBAIOIMMHU TBEPJBIMH 4aCTHUAMH B KaHaje,
OrpaHHYEHHOM HAIPETHIMHM WM OXJaXIEHHBIMM CTEHKAMHM NOCTOSHHON TemnepaTyphbl. C nOMOLIBIO
MOAMPULUHPOBAHHOTO OHGGEPEHINANLHOIO NPHOIMKEHHA, B KOTOPOM yYHThIBAETCS JIMHEHHO aHH30-
TPOIHOE pacceUBaHKe, IPOBEICH PAacHeT TEMIOBOTO H3JTY4EHHs, JOCTOBEPHOCTL PE3YJIbTATOB KOTOPOro
[IPOBEPEHA CONOCTABJIEHHEM C HEKOTOPbIMH TOYHBIMH DEIeHHsMH. BbiBenienbl ocHOBHBIC Au(depen-
UHAJLHBIE YPABHEHHS B BHIE TPEX B3aHMOCBA3AHHEIX (HEJHMHEHHBIX) COOTHOWEHHH, KOTOPIC PELICHB
YHC/IEHHO HESBHBLIM HTEPAUMOHHBIM METOJOM KOHEUHBIX pa3HocTei. Pesynbratoi 06o0mmensl Ha (M-
pOKHe [Mana3oHbl IapaMETPOB.



